更多>>精华博文推荐
更多>>人气最旺专家

黄兴

领域:药都在线

介绍:2、运用大数据技术提高经济运行信息及时性和准确性。...

杨嗣复

领域:日报社

介绍:第一种定义HSS)分类法是按其冶金学名称定义分类,可分为低强度钢,传统高强钢(Conventional和先进高强钢(AHSS)。尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐

尊龙国际
本站新公告尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐
uqs | 2019-06-17 | 阅读(759) | 评论(345)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐
opm | 2019-06-17 | 阅读(832) | 评论(927)
这些是不少培训机构在推介课程时都会拿出来的两个理由。【阅读全文】
3bi | 2019-06-17 | 阅读(510) | 评论(774)
目前就已经做好了。【阅读全文】
fbx | 2019-06-17 | 阅读(845) | 评论(681)
通过这次“保先”教育活动,本人深刻体会到,中国共产党是一个与时俱进的党,是一个永不固步自封的党,是一个勇于自我纠正、自我调整、自我发展的党,更坚定了本人与之共同奋斗的信心和决心。【阅读全文】
4co | 2019-06-17 | 阅读(510) | 评论(247)
2、网站有快速侵权处理的方式,真的遇到了侵权,原创作者又要求删除的情况,只要在线提交删除申请或者找在线人工都会快速删除侵权文档。【阅读全文】
c2x | 2019-06-16 | 阅读(330) | 评论(51)
为满足减轻车身重量并提高安全性能的需要,最理想的方案是扩大高强度钢板的使用。【阅读全文】
so2 | 2019-06-16 | 阅读(584) | 评论(513)
 ——————————————————————————————————————;【阅读全文】
qb3 | 2019-06-16 | 阅读(607) | 评论(927)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐,尊龙d88娱乐
ykg | 2019-06-16 | 阅读(498) | 评论(764)
结尾:分析问题,明确方向。【阅读全文】
ivh | 2019-06-15 | 阅读(513) | 评论(708)
……;1.种子发育为植物是()A.事物的量变过程B.事物自身否定的结果C.外力作用的否定D.新事物与旧事物一刀两断2.下列说法符合辩证否定原理是()A.把刚写好的字又涂掉B.看到洗澡水脏了,就把它连同盆中的小孩一起倒掉C.改革是自我完善和发展D.青年学生要成长为共产主义者,就必须和旧是的东西实行彻底的决裂;3.人类在发明创造活动中,对某一事物的“习惯性”思维往往制约着人们的发明眼界。【阅读全文】
2so | 2019-06-15 | 阅读(327) | 评论(919)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
x2r | 2019-06-15 | 阅读(658) | 评论(481)
 瞬时变化率——导数学习目标重点难点1.能说出平均变化率和瞬时变化率的区别与联系.2.会分析瞬时变化率就是导数的含义.3.能记住导数的定义,会利用导数定义求函数的导函数.重点:瞬时变化率的理解.难点:利用导数定义求函数的导函数.1.瞬时速度(1)在物理学中,运动物体的位移与所用时间的比称为__________.(2)一般地,如果当Δt__________0时,运动物体位移s(t)的平均变化率eq\f(s(t0+Δt)-s(t0),Δt)无限趋近于一个______,那么这个______称为物体在t=t0时的__________,也就是位移对于时间的____________.预习交流1做一做:如果质点A按规律s=3t2运动,则在t=3s时的瞬时速度为__________.2.瞬时加速度一般地,如果当Δt__________时,运动物体速度v(t)的平均变化率eq\f(v(t0+Δt)-v(t0),Δt)无限趋近于一个_______,那么这个________称为物体在t=t0时的_________,也就是速度对于时间的____________.3.导数(1)设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),若Δx无限趋近于0时,比值eq\f(Δy,Δx)=eq\f(f(x0+Δx)-f(x0),Δx)无限趋近于一个______A,则称f(x)在x=x0处______,并称该______A为函数f(x)在x=x0处的______,记为______.(2)导数f′(x0)的几何意义就是曲线y=f(x)在点P(x0,f(x0))处切线的________.(3)若f(x)对于区间(a,b)内任一点都可导,则f(x)在各点的导数也随着自变量x的变化而变化,因而也是自变量x的函数,该函数称为f(x)的________,记作________.预习交流2做一做:设函数f(x)可导,则当Δx→0时,eq\f(f(1+Δx)-f(1),3Δx)等于__________.预习交流3做一做:函数y=x+eq\f(1,x)在x=1处的导数是__________.预习交流4利用导数求曲线切线方程的步骤有哪些?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)平均速度 (2)无限趋近于 常数 常数 瞬时速度 瞬时变化率预习交流1:提示:s(3+Δt)=3(3+Δt)2=3[9+6Δt+(Δt)2]=27+18Δt+3(Δt)(3)=3×32=27.Δs=s(3+Δt)-s(3)=18Δt+3(Δt)2,∴eq\f(Δs,Δt)=18+3Δt,当Δt→0时,eq\f(Δs,Δt)→.无限趋近于0 常数 常数 瞬时加速度 瞬时变化率3.(1)常数 可导 常数 导数 f′(x0) (2)斜率 (3)导函数 f′(x)预习交流2:提示:eq\f(f(1+Δx)-f(1),3Δx)=eq\f(1,3)·eq\f(f(1+Δx)-f(1),Δx),当Δx→0时,eq\f(f(1+Δx)-f(1),Δx)=f′(1),∴原式=eq\f(1,3)f′(1).预习交流3:提示:∵函数y=f(x)=x+eq\f(1,x),∴Δy=f(1+Δx)-f(1)=1+Δx+eq\f(1,1+Δx)-1-1=eq\f((Δx)2,1+Δx).∴eq\f(Δy,Δx)=eq\f(Δx,1+Δx),当Δx→0时,eq\f(Δy,Δx)→0,即y=x+eq\f(1,x)在x=1处的导数为0.预习交流4:提示:利用导数的几何意义求曲线的切线方程的步骤:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线的点斜式方程,得切线方程为y-y0=f′(x0)(x-x0);(3)将所得切线方程化为一般式.一、求瞬时速度一辆汽车按规律s=at2+1做直线运动,当汽车在t=2s时的瞬时速度为12m/s,求a.思路分析:先根据瞬时速度的求法得到汽车在t=2s时的瞬时速度的表达式,再代入求出a的值.1.一个物体的运动方程为s=1-t+t2.其中s的单位是m,t的单位是s,那么物体在3s末的瞬时速度是__________.2.子弹在枪筒中运动可以看作是匀变速运动,如果它的加速度是a=5×105m/s2,子弹从枪口射出时所用的时间为t0=×10根据条件求瞬时速度的步骤:(1)探究非匀速直线运动的规律s=s(t);(2)由时间改变量Δt确定路程改变量Δs=s(t0+Δt)-s(t0);(3)求平均速度v=eq\f(Δs,Δt);【阅读全文】
2er | 2019-06-15 | 阅读(792) | 评论(822)
第四单元发展社会主义市场经济;;考点突破二:市场调节固有的弊端;考点突破三:整顿和规范市场秩序;如何规范市场秩序;;热点链接:我国创新和完善宏观调控方式,先后提出区间调控、定向调控精准调控、相机调控,促进经济社会发展。【阅读全文】
r1w | 2019-06-14 | 阅读(996) | 评论(347)
否则一个绝好的文档怎么可能在别人手上呢?4.理清谁是版权源头,本身就是一件极为困难的事情严格来说文档内容本身不是纯粹的干净,无论是学术论文,还是文档内容本身,即使内容本身没有去抄袭文字本身,但是我们在作文档内容的过程中,都或多或少、有意无意的抄袭别人先进思路,先进理念的地方。【阅读全文】
lh1 | 2019-06-14 | 阅读(865) | 评论(926)
陕甘宁边区首府、中共中央所在地延安成为敌后战场的战略总后方和指挥中枢。【阅读全文】
共5页

友情链接,当前时间:2019-06-17

利来国际是多少 利来国际旗舰版 利来国际最给利的老牌 利来国际旗舰厅怎么 利来国际AG旗舰厅
利来国际 w66利来 利来国际最给利的老牌 wwww66com利来 利来娱乐国际最给利老牌网站
利来国际官网w66 w66利来 利来娱乐老牌 利来国际最老牌 利来AG旗舰厅
利来娱乐老牌 利来娱乐网 利来国际真人娱乐 利来娱乐w66 w66.利来国际
龙山县| 三都| 加查县| 临猗县| 山东| 天水市| 锦州市| 乾安县| 图木舒克市| 汾阳市| 涪陵区| 新绛县| 海口市| 文安县| 许昌市| 庆阳市| 寻甸| 美姑县| 玛纳斯县| 延寿县| 宁波市| 鹤岗市| 兴业县| 武城县| 安达市| 金昌市| 富锦市| 普格县| 凌云县| 长沙县| 南木林县| 浙江省| 休宁县| 宁夏| 东乡族自治县| 望城县| 沁源县| 当雄县| 波密县| 阳高县| 邛崃市| http://m.07571705.cn http://m.41199390.cn http://m.86127284.cn http://m.91629634.cn http://m.36943985.cn http://m.41516194.cn